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Abstract. A Darboux transformation converting the lost solution relating to the ("-1)- 
soliton solution of the KdV equation to that to the n-soliton solution is shown to be written 
in the form of a pole expansion and is then found explicitly for arbitrary n. Multisoliton 
solutions of the KdV equation are thus generated in practice by algebraic recursive pro- 
cedures. The system of linear algebraic equations given by the inverse scattering method 
is reformulated, but without the restriction of A , ,  A 2 , .  . . , AN in the upper half-plane of 
the spectral parameter A. It is shown that an N-soliton solution specified by N couples of 
the constants ( A l ,  b L ) ,  (A2, b2), . ..,(A,.,, b,) is unaltered when one of these couples, say 
( A n ,  b"), is transformed into (,in, b i t ) .  Therefore, the usual restriction of A , ,  A i . .  . . , A N  is 
unnecessary and a definite N-soliton solution can be specified equally by 2N possible sets 
of COUDICS of the constants. 

1. Introduction 

The spectral significance of Backlund transformations in connection with nonlinear 
equations is that, typically, they have associated nonlinear superposition whereby 
multisoliton solutions to nonlinear equations may be generated by algebraic recursive 
procedures, in principle (Miura 1978, Rogers and Shadwick 1982). After discovering 
the inverse scattering method (Gardner er a/ 1967, Lax 1968, Zakharov and Shabat 
1971, Ablowitz el a/ 1973), a transformation between two Jost solutions relating to the 
(n - I ) .  and n-soliton solutions of the same nonlinear equation is found to be more 
suitable for this purpose (Neugebauer and Meinel 1984, Levi et a/ 1984, Rangwala 
and Rao 1985, Gu and Zhou 1987). This may be called the Backlund transformation 
in the form of the Darboux matrix, or simply the Darboux transformation. However, 
to obtain explicit expressions of the Darboux transformations is still difficult, so that 
they were found merely for n = 1 for the Kdv equation and for equations of the zs class, 

Recently, due to introducing the Darboux transformation in pole expansion to 
replace the usual power expansion, explicit Darboux transformations have been found 
for arbitrary n for equations of the zs class (Chen et a/ 1988, Xiao and Huang 1989). 
Afterwards, with the help of the so-called reduction transformation invariance, the 
same method gave explicit Darboux transformations for arbitrary n for the MNLS 

equation (Chen and Huang 1989), and for the DNLS equation (Huang and Chen 1990). 
both of which belong to the modified zs class. 

For the Kdv equation, a particular restriction on Darboux transformations is given 
by the property that the 12 element of the matrix of the Lax pair is constant. To 
surmount this difficulty it has been suggested that the KdV equation of 

uz + 6uux + uxxx = 0 ( 1 )  
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and that of 

U, - ~ U U ,  + U,,, = 0 (2) 
must be simultaneously considered (Gu and Zhou 1987). In detail, a Darboux transfor- 
mation is introduced to associate the Jost solution relating to the ( n  - 1)-soliton solution 
of one of these equations and the n-soliton solution of the other. In this way, a system 
of equations which is compatible and can determine expressions of the Darboux 

Darboux transformation is obtained only in the case of n = 1 (Gu and Zhou 1987). 
In this paper, extending the method based upon the Darboux transformation in 

pole expansion given in the paper of Chen et a/  (1988), with the same considerations 
of Gu and Zhou (19871, we show that the Darboux transformation is determined by 
another matrix which satisfies two differential equations. Though these two equations 

a projection matrix so that their solution can be easily found in the usual way. The 
restriction given by the Lax pair mentioned above can be satisfied by choosing constants 
and suitably arranging two rows (or columns) of matrix factors involved in the general 
form of a projection matrix. Explicit Darboux transformations are thus obtained for 
arbitrary n for the Kdv equation so that its multisoliton solutions can be generated in 
practice by algebraic recursive procedures. 

Moreover, the system of linear algebraic equations given by the inverse scattering 
method is reformulated based upon these explicit Darboux transformations but without 
the restriction of A , ,  A 2 , .  . . in the upper half-plane. The same situation has been met 
in the case of the NLS equation (Chen et al 1988). 

In fact, as has been known for a long time, the usual restriction seems too harsh, 
since a two-soliton solution may be specified by two A i ,  j = 1,2, one lying in the upper 
half-plane, the other in the lower half-plane, as seen from its explicit expression. On 
the other hand, in the Backlund transformation (Miura 1978, Rogers and Shadwick 
1982), or in the direct method (Hirota 1971), there is no.reason to give such a restriction. 
However, without any restriction, solutions may be irregular, e.g. a solution with A, 
and A 2  satisfying A ,  = h2,  where the overbat denotes the complex conjugate. Therefore, 
if solutions are demanded to be regular, a certain relatively weak condition must be 
given to restrict these constants. 

This problem has been solved for the NLS equation based upon the method of 
Darboux transformations in pole expansion (Huang and Liao 1991). In this paper, we 
have found explicit Darhoux transformations for the Kdv equation; we can show that 
an N-soliton solution specified by  N couples of the constants ( A j ,  b j ) ,  j-= 1,2,. . . , N 
is unaltered when one of these couples, say (A,,, b,,), is transformed into (A,,, b i ' ) .  This 
result shows that the usual restriction given by the inverse scattering method is 
unnecessary and a definite N-soliton solution can be specified equally by 2N possible 
sets of N couples of constants. At the same time this result shows that the usual 
restriction is allowable, since none of the known multisoliton solutions is ruled out. 

t:an:fn:--ations is derived. Bat, nwing to caE-p!exity, ax exp!ici: expressia:: Gf :he 

are sti!! non!inear we car? transfnrm them into thc standard dltfPYPntia! Pquati0"s of 

2. %ii:oiix :iaiisfGiiii8tkjiis iii pa!e erpmioo 

The Lax pair of equations of (1) and (2) is 

J,@(x,  I ,  A )  = L ( x ,  I ,  A ) @ ( %  L, A )  

J,@(x,  I ,  A )  = M ( x ,  I ,  A ) @ ( X ,  1, A )  

(3) 
(4) 
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where 

L(A) = - i A u 3 + (  0 -1  

for (l), and 

L(A) = -iAu3+(: A) 

for (2). When soliton solutions are considered, a subscript n is  added to specify 
quantities relating to the n-soliton solution. For definiteness, we suppose that U, satisfies 
(1) or (2), according to whether n is even or odd. 

Since 

(7) "^ II1-m 
LID I y - w  " " ( I \  . - : n , 3 -  L " ( A ) + i h 3  '",",")- -1-n "1 

@,, (A) ,  n = 1,2, .  . . can be chosen to have the same asymptotic expressions in the limit 
as / A I +  00. We then define Jost solutions F.(A) recursively by Darboux transformations 
D.(A) such that 

F.(A)= D n ( A ) F n - i ( A )  n = 1,2,. . . (8) 

D.(A)-*I as l A / + C O  (9) 

where 

and we assume 

where the overbar denotes the complex conjugate and, as usual, 

A,, = ik, (11) 

where k, is a real constant, and P,,(x, 1) is independent of A .  It is obvious that 

exp[-i(Ax+4A3f)] -exp[i(Ax+4A3t)] 
i2A exp[i(Ax+4A3f)] 

as seen from (3)-(5) with u,=O. From (8)-(10) we can see that F.(A) is composed of 
two Jost solutions with two components 

. n l " l -  c 1 . 1 - 1 . ;  IC"\'iI / I \  V"I , t I l  i 1 1 1 1  ( ! 3 )  

which both have n single poles: A,, A > , .  . . , A. .  
Similarly, we may consider 
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where 

x, - A. 
D b ( A ) = I + - P L  (15 )  

Fb(A) = F,(A).  (16) 

A - A n  

We thus have 

Fb(A) = ( + , ( A )  $ . ( A ) )  (17) 

where +,(A)  and $"(A) have n single poles: x,, x,, . . . ,,in. 

Lax pair of the Kdv equation, e.g. 
From (3)-(6), we notice that each component of (13) and (17)  satisfies the usual 

( -a:+(- l )""u, )~~(A) ,  = A'I,&(A)~ (18 )  

etc. 
Substituting (8) into (3) and (4), we find 

W n  ( A  ) = L ( A  )D. ( A  1 - D. ( A ) L  -,(A ) (19) 

a J ' n ( A ) =  M.(A)D,(A)-D,(A)M,-i(h). (20) 

U"= Un-l-i(An-xn)[Pn,u3] (21) 

Pnx = L(An)Pm - P n L - , ( L )  (22) 

P.,=M.(A,)P.-P,M.-,(A,) (23) 

From (19) and (20) we have 

where 

U" = ( U. 0 (-1)"") 0 ' (24) 

Taking the limit as A +  x,, in (19) and (20) we obtain 

- p n X  = ~"(x")(r-p~)-(r-p")~"-,(,i") ( 2 5 )  

-P", = M ~ ( ~ " ) ( ~ - P " ) - ( ~ - P " ) M ~ - , ( ~ " ) .  (26) 

From (22) and (25) we have 

P., = L.-,(L,)P. - P,,L,-I(A,) + Pn(&t(An) - L - I ( ~ ~ ) ) P ~  

+ ( L ( A , , )  - L(xn))(Pn - P'.). (27) 

Similarly, from (23) and (26), we have 

P,,, = M.-,(L,)P,  -P,,M.-i(A,)+ P.(M,- , (h,)-M.- , (X.))P" 

+(M.(A.)- Mn(x.))(pn - p: ) .  (28) 

If P. is a projection matrix 

P', = P" (29) 

the last terms on the right-hand sides of (27) and (28) vanish, and the remaining terms 
show that they are differential equations of a projection matrix. Therefore, (27) and 
(28) have a projection matrix solution. 
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From (21) we have 

u " - u " - , = - i ( A ~ - i ~ ) 2 ( P " ) * , .  (31) 
Equation (30) gives a restriction on P. to which we must carefully pay attention in 
solving (27) and (28). 

From (29)-(31) P. must be a real matrix: 
- 
P,, = P,. (32) 

This condition can be satisfied by taking pure imaginary A , ,  A,, . . . , as usual. 
Similarly, from (14) and (151, we obtain two equations for P;, which have the 

same forms as (27) and (28), except for the interchange of An and in. When PL is a 
projection matrix, the resultant equations are equivalent to those of u2PTu2 obtained 
from (27) and (28), since 

U ~ L ( A ) ~ U ~ =  -L(A)  (33) 

u & J ( A ) ~ u ~  = - M ( A ) .  (34) 

P:, = u,P:u2, (35) 

Therefore, we have 

This formula can be also derived from other considerations. 

3. An explicit solution lor  n = 1 

Since & ( A )  has no singularity, we can set A = A ,  and A = h, .  It is easily seen that a 
solution of (27) and (28) in the case of n = 1 is 

where 6, is a real constant, and " indicates the interchange of two rows. From (12) we 
have 

0 -exp[ -i(Ax+ 4A3f)] 
-i2A exp[i(Ax + 4A'f)I -exp[i(Ax + 4A'f)l 

Setting A = A , ,  A I  =ik,  every component of (12) and (37) becomes real. Explicitly, 
we have 
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where 

y =  kj(x-4k:f). (42) 
We thus see that (30) and (32) have been satisfied for n = 1. 

From (31) we obtain 

U, =-2k:sech2{kj[(x-x,)-4k:t]) (43) 

x, = (2k,)-' In(b,). (44) 

where 

Equation (43) is the familiar expression of the one-soliton solution of the Kdv equation 
of (2). 

Substitution of (38), etc., yields 

where 

( 5 2 )  
i , - A ,  

g,(A)2= -- (P,)21 exp[-i(Ax+4A3f)]. 
A - A ,  

From (8) we have 

Because of (39). the term within large square brackets on the right-hand side of (53) 
becomes 

We thus have 
~ 

+r(A) ,  =ft(i),. ( 5 5 )  

Similarly, we can derive (46) and the second component of (48). 
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It is obvious that/i(A)l, etc., and $,(A)l ,  etc., are real when A is pure imaginary. 
From (3), (4) and (6) we can see that (48) is a solution of them as long as (45) is. 
However, they have different poles: A ,  for (49 ,  X I  for (48). We also have 

6i(ii) = bi$i(Xi) (56) 

etc. 
Since PI is a projection matrix, and noticing (15) and (35), we have 

P,  = I - c * P T u 2 =  Di(Al) .  ( 5 9 )  

We then have 

where 

1 
a ,  =- 

A , - X , '  

Taking account of (S7), we have 

Setting A =XI, noticing ( 5 6 )  and (58 ) ,  the 11 element of the matrix of (62) is 

This equation is just the linear algebraic equation given by the inverse scattering method 
for the Kdv equation of (2) for n = 1. 

4. Explicit solutions for arbitrary n 

We can obtain step by step all the necessary formulae for arbitrary n: 



, 
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These formulae are real when A is pure imaginary. We have 

Fa-~(in)(-F)  (1 bn)l?lll(An) 

(1 b, 1 P~:'I (A,,) F,,-, (in)(-:) 
P. = 

where b, is rea! cans!znt, azd >." i s  pnre imaginz!y. 
Explicitly, we have 

Since A. =ik., we have shown recursively that (30) and (32) are satisfied in the case 
of arbitrary n. 

Substituting (64), etc., into (8), we obtain F"(A) (which is (13)), each component 
of which has the same expressions as (641, etc., by replacing the suffix n - 1 by n, 
respectiveiy. From (ji),  we obtain the muirisoiiton solutions of [ne Kdv equation by 
algebraic recursive procedures. 

5. Reformulation of the system of linear algebraic equations given by the inverse 
scattering method 

From the explicit expressions of the Darboux transformations we can obtain a system 
of linear algebraic equations which is the same as that given by the inverse scattering 
method but without the restriction of A , ,  A2,. . . , in the upper half-plane of the spectral 
parameter. From (8) and (10) we have 

F , ( A ) =  G,(A)F,(A) (73) 

G N ( A ) = D N ( A ) D N - ~ ( A ) .  . I Di(A). (74) 

where 

Taking account of ( l o ) ,  by expanding (74) in the partial fraction, we obtain 

where A. is independent of A,  and 

A.= lim ( h - A . ) G N ( A ) .  
*-A., 
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Since P, are projection matrices, we have 

I - P, = u,P:u,, 

Taking account of ( 3 9 ,  we have 

A - A n  
A - A ,  

a( ,+ )=  n -. 
Taking the limit as A + A., from (79) we obtain 

GL(An) =a.  lim (A-A,,)GN(A) 
A-*. 

where 

From (75), (76) and (82), we have 

Here we have dropped the subscript N 
Noticing ( 3 9 ,  we have 

,m the riL -hand sides of (85) and (86). 

G & ( A ~ ) & ( A ~ ) = .  . . P J X - , ( A ~ ) .  . . D:(A,)F&.) 
= .  . . P.&,(A,) 

= . . . ( 1  b,) (87) 

where the expression on the left of P, on the right-hand side of (87) i s  not obviously 
written. We thus have 

F L ( A " ) = .  . . ( h .  1 )  (88) 

and then 

F L ( A " ) = $ ( L ) ( h  1) (89)  
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i.e. 

+ ( A n )  = bn+(A,,). 

Similarly, we have 

FN(h,)= ... ( I - P . ) F . - , ( h ~ )  

= . . . uZP,,u2Fn-,(hn) 

=. . . ( -bn l)F"-l(h")Tu~F~-,(h~) 
=. . . (+b. 1)u2 

= . . . ( 1  b,) 
and we thus have 

FN(h.)= $ ( h N  b.) 

$(in) = b.$(h.). 

i.e. 

Substituting (89) into (84), we have 

The 11 element of the matrix of (94) is 

since 

1 i2A exp[i(Ax+4A3f)] exp[i(Ax+4A3!)] ( 0 exp[-i(Ax +4A3t) J l2A 
F,-'(A) =- 

As $ ( A ) ,  satisfies (18) in setting n = N, we thus have 

) (97) 
uN(x, 2 d  '$(A.),exp[i(A,x+4A3,1)] 

i d x  a, 

when considering the asymptotic behaviour of $(A) l  in the limit as IAl+OO. 

(-l)N-'$(A,n)~ 

When A = h,, from (95) we have 

1 b, 
= ( 1  + 7 - $ ( A , , ) ,  exp[i(A.x+4Ait)J 

* = I  A , - A -  a, 

x exp[-i(h,x+4h~t)]  (98) 
since 

$ ( x m ) i  = f ~ ( h m ) ~  = ( - l ) N - ' $ ( A m ) I  (99) 

which can be obtained from formulae similar to (64)-(67). 
Equations (951, (97) and (98) are necessary formulae for giving the N-soliton 

solution of the Kdv equation. These formulae are the same as those obtained by the 
inverse scattering method but without the restriction of A I ,  A 2 . ,  . . , A N  in the upper 
half-plane of A. 



Darboux rransformations for rhe Kdv equation 479 

6. Demonstration 

We ought to show that the Jost solutions obtained by the above procedure satisfy the 
corresponding Lax equations. 

P. has been shown to be a projection matrix; we thus have 

since 

D ~ ( A ) D ; ' ( A )  = r for arbitrary A. 

We aiso have 
c - 1 0 1 -  n - 1 ( h > n - l c h \  " - l o \  

G&(A) = w~G;'(A)~w~. 

"N\"I -"I  \"I"2 \ " I . . . " N \ " I  

Since G;'(A) has N single poles: i,, x,, , , , , I,, we write 

F&'(A) = F,'(A)G;(A) 

as mentioned below (14). From (101) we have 

&(A)F;'(A) = I .  

From (89) we have 

lim ( J ~ F ~ ( A ) ) F & ' ( A )  
A-*,, 

Similarly, ( & F N ( A ) ) F L ' ( A )  vaniahes as A + x,. Therefore, A,, in, n = 1,2, .  . . , N are 
regular points of (d,F,(A))FL'(A) and, similarly, of (d,FN(A))F&'(A). 

From (73) and (104) we have 

(:07) ,? c I ,  1, I = - 1 ,  L I - f? I L , E - ] ,  L ,I f? I , ,  r I ,  ,e-!/ h \ 
( " x r , V ( " J J I ' N  ( " 1 -  U N x l " 1 U . W  I A I  u N I " I . C O I " I u N  \ " I .  

(&F,.,(A))FL'(A) is thus analytic everywhere except at A =m. 
We expand GN(A)  into a Taylor series about A = m: 

m 

G N ( h ) =  1 a,A-' 
,=U 

where 

rU,=l 
N N 

a,= 1 A,= 1 (A,-X,,)P, 
" = I  " = I  

by (75 )  and (!e). The:ehF-:e, '&'e hare 

( a , ) , > = - i  o r 0  for odd N or even N 

(ad1, = itu, 

because of (30) and (31).  
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Similarly, we have 
m 

G-,'(A)= 1 p k K k  
k-0 

where 

P 0 = 1  &=-a,. 

Substituting (108) and (113) into (107), we have 

( J x F N ( A ) ) % ' ( ~ )  = LN(A) +O(lAl-') 
since 

Therefore, (J ,FN(A) )FG' (A) -LN(A)  is analytic in the whole complex A-plane and 
tends to zero as ( A (  + m; by the Liouville theorem it is equal to zero. This yields 

GNx(A\)G~'(A)+GN(A)LU(A)G-,l(A)= L N ( A )  (117) 

J x F N ( A )  = LN(A)FN(A). (118) 

or 

Similarly, we have 

(&FN(A))FG'(A)  = GN,(A)G:(A)+ GN(A)Mo(A)Gz(A) .  (119) 

Mo(A)=4A2L0(A) (120) 

4A2(-iAu3+ UN) -4Aa, ,  -4(a2, + a l x f i l ) + O ( ~ A / ~ ' ) .  (121) 

G N ~ ( A ) + 2 G N ~ ( A ) L , ( A ) = ( U 2 , +  UN=)GN(A). (122) 

( J , F ~ ( A ) ) F G ' ( A )  is thus analytic everywhere except at A =oO. Owing to 

the right-hand side of (119) is 

From (1  17) we also have 

Multiplying (122) by r3Gk1(A) and expanding the resultant equation about A =a we 
obtain 

2 ( - i ) a l , = ( ~ ~ + ~ N r ) u 3  (123) 

a,z.Tu3+2(-i)(a,xpl + aIx)  + 2 o l , , ~ ~ u ~  = (U',+ UNr) (a,n3+ TA). (124) 

From (123), we have 

Taking account of (116). from (124) we have 

a,,P, +a,, = -+ (U:+  U,,)UN + X U % +  U,,), 

Therefore, (121) is equal to M,(A)+O((Al-'),  and (J ,FN(A) )F'N' (A) -MN(A)  is 
analytic in the whole complex A-plane and tends to zero as [ A [ +  m. By the Liouville 
theorem it is equal to zero, and we thus obtain 

(127) JtFN ( A )  = MN ( A  ) FN ( A ) .  



Darboux transformations for  the Kdv equation 48 1 

7. Soliton solutions and locations of poles 

Now we turn to the problem on the restriction on the poles of the transmission 
coefficient for specifying an N-soliton solution of the K d v  equation given by the inverse 
scattering method (Gardner ef al 1967). From (78) we have 

A - h "  
D,(A) =- Db(A) 

A - A .  

and then 

Substituting into (3) and (4), and eliminating the factor ( A  - X n ) / ( A  - A n ) ,  we obtain 

U, = U ~ ~ , - ~ ( ~ " - A " ) [ U ~ P : U ~ ,  u3]. (130) 

Equations (21) and (130) are two different expressions for giving the same parameter, 
U,. From (130) we have 

U, = u ~ ~ , - i ( h " - A " ) 2 ( u 2 P ~ u ~ ) ~ , .  (131) 

Equations (31) and (131) are, similarly, two different expressions for the same para- 
meter, u.. 

It is easily seen that 

We thus have 

It is necessary to write explicitly the couples of related constants from now on. 

u2Pn(An, bw)Tu2= Pn(hn, b;'). (135) 

From (134) we have 

From (129) we have 

A -h" 
F n ( A ;  An,  b,) =- F,(A; in, b;'). (136) A - A n  

From (21) and (130) we obtain 

Un(Af i ,  b , )  = um(Xn, h i ' )  (137) 

where the couples of the constants ( A n - l ,  bn -J , .  . . , ( A l ,  b,) remain fixed. 
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When the couples of the constants ( A N ,  bN), . . . , ( A , + , ,  b,,,) are unaltered, using 

Pn+i(An, b,)= pn+i(in. bi ' )  (138) 

(136) we have 

b")= U"+,:x", b,I) ::48) 

where the unaltered couples of the constants are not written explicitly. Repeating the 
procedures step by step we finally obtain 

P N ( L ,  bn)=P,v(Xm, b i l l  (141) 

F N ( A ;  bn)=- F N ( ~ ;  in.  bi l )  (142) 
A - i n  
A - A n  

U N ( A ~ ,  b.)= UN(X", b i ' ) .  (143) 

In the above recursive formulae, P, depends on quantities with subscripts less than 
n but not those with subscripts larger than n. However, the final results, (142) and 
(143), are independent of the order of these subscripts, since we have obtained a system 
of linear algebraic equations (98) which is symmetric with respect to these subscripts 
and gives directly # l ( A N ) I  and then u N .  

Equation (143) obviously yields that a definite N-soliton solution can be equally 
specified by 2N possible sets of N couples of constants so that the usual restriction 
given by the inverse scattering method is unnecessary. However, this restriction is 
allowable, since all multisoliton solutions are included. it is easily seen that when A , ,  
A,, A 2 ,  i2,. . . , A N ,  I N  are different from each other, the solution is regular and is 
indeed an N-soliton solution. 

We have seen that the Darboux transformations for the Kdv equation are more 
complicated than those for the NLS equation and for the sine-Gordon equation (Chen 
et al 1988, Xiao and Huang 1989). In the case of the NLS equation, it is known that 
the method of the Riemann problem with zeros (Zakharov and Shabat 1980) and the 
method of Darboux transformation in pole expansion are connected. The obtained 
expressions for Darboux transformations for the Kdv equation may be of help in the 
Riemann problem with zeros in  this case. 
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